A Local Texture-Based Superpixel Feature Coding for Saliency Detection Combined with Global Saliency
نویسندگان
چکیده
Because saliency can be used as the prior knowledge of image content, saliency detection has been an active research area in image segmentation, object detection, image semantic understanding and other relevant image-based applications. In the case of saliency detection from cluster scenes, the salient object/region detected needs to not only be distinguished clearly from the background, but, preferably, to also be informative in terms of complete contour and local texture details to facilitate the successive processing. In this paper, a Local Texture-based Region Sparse Histogram (LTRSH) model is proposed for saliency detection from cluster scenes. This model uses a combination of local texture patterns and color distribution as well as contour information to encode the superpixels to characterize the local feature of image for region contrast computing. Combining the region contrast as computed with the global saliency probability, a full-resolution salient map, in which the salient object/region detected adheres more closely to its inherent feature, is obtained on the bases of the corresponding high-level saliency spatial distribution as well as on the pixel-level saliency enhancement. Quantitative comparisons with five state-of-the-art saliency detection methods on benchmark datasets are carried out, and the comparative results show that the method we propose improves the detection performance in terms of corresponding measurements. OPEN ACCESS Appl. Sci. 2015, 5 1529
منابع مشابه
A Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملSuperpixel based color contrast and color distribution driven salient object detection
Color is the most informative low-level feature and might convey tremendous saliency information of a given image. Unfortunately, color feature is seldom fully exploited in the previous saliency models. Motivated by the three basic disciplines of a salient object which are respectively center distribution prior, high color contrast to surroundings and compact color distribution, in this paper, ...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملWeakly Supervised Top-down Salient Object Detection
Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015